Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 1937, 2018 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-29386667

RESUMO

Stability of opto-mechanical phase shifters consisting of waveguides and non-signal carrying control beams is investigated thoroughly and a formula determining the physical limitations has been proposed. Suggested formulation is not only beneficial to determine physical strength of the system but also advantageous to guess the response of the output to the fabrication errors. In the iterative analysis of cantilever and double-clamped beam geometrical configurations, the stability condition is revealed under the strong inter-dependence of the system parameters such as input power, device length and waveguide separation. Numerical calculations involving effective index modifications and opto-mechanic movements show that well-known cantilever beams are unstable and inadequate to generate φ = 180° phase difference, while double-clamped beam structures can be utilized to build functional devices. Ideal operation conditions are also presented in terms of both the device durability and the controllability of phase evolution.

2.
Sci Rep ; 8(1): 1619, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374223

RESUMO

An area efficient novel optical modulator with low operation voltage is designed based on integrated Mach-Zehnder Interferometer with a photonic crystal slab structure as the phase shifter. Plasma dispersion effect is utilized so that photonic band-to-band transition occurs at the operating frequency leading to a high index change (Δn = ~4) for π-phase shift on the modulator. This approach reduces the phase shifter length to a few micrometers (~5 µm) in a silicon on insulator platform and operating voltage required is around 1 V. Low voltage together with short optical interaction length decrease optical losses and power consumption during modulation process providing a great opportunity for size and system cost optimization.

3.
Opt Express ; 24(25): 29329-29341, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27958593

RESUMO

Temporal group delays originating from the optical analogue to electromagnetically induced transparency (EIT) are compared in two systems. Similar transmission characteristics are observed between a coherently coupled high-Q multi-cavity array and a single quantum dot (QD) embedded cavity in the weak coupling regime. However, theoretically generated group delay values for the multi-cavity case are around two times higher. Both configurations allow direct scalability for chip-scale optical pulse trapping and coupled-cavity quantum electrodynamics (QED).

4.
Opt Express ; 21(4): 5014-24, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23482034

RESUMO

Near-infrared Hong-Ou-Mandel quantum interference is observed in silicon nanophotonic directional couplers with raw visibilities on-chip at 90.5%. Spectrally-bright 1557-nm two-photon states are generated in a periodically-poled KTiOPO4 waveguide chip, serving as the entangled photon source and pumped with a self-injection locked laser, for the photon statistical measurements. Efficient four-port coupling in the communications C-band and in the high-index-contrast silicon photonics platform is demonstrated, with matching theoretical predictions of the quantum interference visibility. Constituents for the residual quantum visibility imperfection are examined, supported with theoretical analysis of the sequentially-triggered multipair biphoton, towards scalable high-bitrate quantum information processing and communications. The on-chip HOM interference is useful towards scalable high-bitrate quantum information processing and communications.


Assuntos
Refratometria/instrumentação , Silício/química , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Infravermelhos , Luz , Teste de Materiais , Fótons , Espalhamento de Radiação
5.
Opt Lett ; 37(4): 665-7, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22344141

RESUMO

We demonstrate chip-scale flat-top filters at near-IR wavelengths using negative index photonic crystal based Mach-Zehnder interferometers. Supported by full three-dimensional numerical simulations, we experimentally demonstrate a new approach for engineering high-pass, low-pass, bandpass, and band-reject filters, based on designing the photonic band diagram both within the bandgap frequency region and away from it. We further show that our approach can be used to design filters that have tunable multilevel response for different sections of the spectrum and for different polarizations. This configuration enables deterministic control of the bandwidth and the rejection ratio of filters for integrated photonic circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...